我们正处于一个信息大暴发的时代,每天都能产生数以百万计的新闻资讯!
虽然有大数据推荐,但面对海量数据,通过我们的调研发现,在一个小时的时间里,您通常无法真正有效地获取您感兴趣的资讯!
头条新闻资讯订阅,旨在帮助您收集感兴趣的资讯内容,并且在第一时间通知到您。可以有效节约您获取资讯的时间,避免错过一些关键信息。
环境感知是人形机器人与真实世界互动的起点。在感知、决策和执行的循环过程中,机器人将外部世界的信息转化为可以理解和利用的内部表示形式,通过分析和推理确定行动策略,实现与环境的自然互动和任务执行。
例如,全自动驾驶系统FSD采用纯视觉方案,能够高效地识别和分类道路环境中的对象,理解复杂的交通场景,最终实现高精度的环境感知和决策。纯视觉技术方案,通常具有更低的实现成本,高分辨率、高帧率的成像技术以及更接近人类视觉感知方式,被视作有望实现大规模商业化落地的技术应用。
6月20日,傅利叶智能在社交平台更新了一条名为《从“看见”到“理解”,人形机器人端到端环境感知技术进展》视频,该技术使得机器人不仅用“眼”看到,还可以用“脑”分析,识别可通行的区域及障碍物,为复杂环境中的导航和路径规划提供全面支持。特别是在动态环境中,端到端环境感知技术显示了优越的环境建模能力与实时物体跟踪性能。使得GR-1成为首台具备端到端环境感知能力的人形机器人。
傅利叶端到端环境感知技术采用纯视觉方案,在GR-1周身配置6个RGB摄像头,覆盖机器人周围360度视角,提供前视、侧视和后视图,可全面感知周围环境,并精确识别和追踪。
该技术融合BEV鸟瞰视图、Transformer深度学习模型、OCC占用网格和人形机器人,为复杂环境中的导航和路径规划提供支持。
BEV整合多个摄像头数据,简化复杂的三维空间信息,生成全局的环境视图,帮助机器人理解其所处的环境布局。Transformer处理时间序列的BEV数据,对环境进行理解和预测,例如预测行人的移动轨迹,生成安全的导航路径。OCC将环境划分为多个网格单元,帮助机器人识别可通行和不可通行的区域,确保导航的安全性和效率。机器人因此获得对环境的全面认知,具备灵活应对局部变化的能力,实现端到端的环境感知。
GR-1在行进过程中识别和标注道路两旁的车辆和行走的人,识别精度与响应速度均表现优异,为实现自主避障与路径规划提供全面和准确的环境理解。特别是在动态环境中,端到端环境感知技术显示了卓越的环境建模能力与实时物体跟踪性能。
纯视觉方案依赖摄像头作为主要传感器,显著减少硬件成本。摄像头能够捕捉到丰富的视觉信息,提供高分辨率的图像,通过深度学习算法,实现更精准的环境感知和场景理解。随着技术的不断成熟,纯视觉方案正变得越来越可靠,对于机器人导航、自动驾驶等智能系统来说将是非常有前景的选择。
拥有端到端环境感知能力的人形机器人,能够在复杂多变的环境中实现自主导航,高效、安全地执行各种任务,未来将在医疗康复、家庭服务、接待引导、安防巡检、紧急救援、工业制造等应用场景中发挥重要作用,开启具身智能的崭新阶段。
环境感知技术是傅利叶在具身智能研发领域的最新进展,不仅提升了产品竞争力,也为行业树立了标杆。在刚刚结束的2024计算机视觉与模式识别会议(CVPR)上,傅利叶智能携人形机器人GR-1及最新发布的端到端环境感知技术亮相展会,并展示了人形机器人在复杂环境中的卓越感知能力。
作为人形机器人赛道领跑者,傅利叶致力于与全球科研伙伴共同探讨前沿技术方案,展开学术交流合作,为应用场景落地及成果转化奠定基础。
如何联系傅利叶智能:
科研院校合作:academic@fftai.com
人才招聘:job@fftai.com
以上内容为资讯信息快照,由td.fyun.cc爬虫进行采集并收录,本站未对信息做任何修改,信息内容不代表本站立场。
快照生成时间:2024-06-26 12:45:28
本站信息快照查询为非营利公共服务,如有侵权请联系我们进行删除。
信息原文地址: