• 我的订阅
  • 科技

量子通信科研有何新突破

类别:科技 发布时间:2024-05-20 06:00:00 来源:每日看点快看

本文转自:解放日报

中美论文同时登上《自然》

量子通信科研有何新突破

俞陶然

■林梅博士认为,在未来可行性验证方面,中国科大团队构建的城域三节点量子网络优于哈佛团队建立的光纤链路。因为后者只有两个节点,而网络雏形至少要包含三个节点,这样才能验证其通信切换的功能——当A、B两个用户在利用量子网络进行通信时,C用户可随时切入,与A或B用户进行通信

本报记者 俞陶然

最近,中国科技大学、哈佛大学的量子通信论文在同一期《自然》杂志发表,引发业内和社会关注。依托中国科大组建的中国科学院量子信息与量子科技创新研究院潘建伟、包小辉、张强等科研人员构建了全球首个基于量子纠缠的城域三节点量子网络;哈佛大学米哈伊尔·卢金团队利用波士顿地区的电信光纤,首次在金刚石SiV(硅空位)色心体系中实现了双节点远距离量子纠缠,光纤距离达到35公里左右。

这两项科研突破背后的科学原理是什么?哪个成果的水平更高?有什么应用价值?记者采访了中国科大专家团队。

量子通信为何能防窃听

量子通信的科学原理源于量子力学,这是与经典力学差异很大的物理学分支,也是迄今为止描述微观世界最准确的理论。专家介绍,一个物理量如果不能连续变化,只能取一些分立的值,这个量就是量子化的。宏观世界里的物理量似乎都能连续变化,但在微观世界里,很多物理量是量子化的,即存在一个最小的单位,不能再往下分割。

经典力学描述一个宏观物体的状态,会给出它的明确位置。而量子力学描述一个微观粒子的状态,给出的是叠加态——这个粒子在某些情况下既可能在这里,也可能在那里,没有确定位置。好比孙悟空的分身术,它能同时出现在多个地方,各个分身就像是孙悟空的叠加态。

在通信领域,经典通信的信号只有0和1,量子通信不仅有信号0和1,还有0+1、0-1等量子叠加态。这种叠加原理导致了量子不可克隆原理:在量子力学中,不可能实现对一个未知量子态的精确复制。这是量子通信达到“无条件安全”的基础。

任何经典通信都存在被窃听的可能。窃听时,0和1这两种信号不会被扰动,所以通信双方无法察觉。而量子通信可以将信息编码,加载到单个光子的量子叠加态的偏振方向上。单光子是光能量的最小组成单元,不能再分割,其量子状态无法被精确复制,任何窃听行为都会对其造成扰动,被通信双方察觉。通过量子态传输,通信双方协商生成量子密钥,再加上对信息进行“一次一密”的加密保护,可实现信息在传输中的完全随机、不可破译,从根本上确保通信安全。

中国科大效率优势明显

“在量子信息领域,纠缠是非常宝贵的资源。量子通信中,量子密钥分发就是利用纠缠的非定域性,通过比对发送方和接收方手中纠缠的测量结果,确定密钥的安全性。”中国科大博士、“墨子沙龙”科普作家林梅说,当几个微观粒子彼此相互作用后,各个粒子的特性会综合成整体性质,无法描述单个粒子的性质,这种现象被称为“量子纠缠”。

最近发表于《自然》的中国科大成果,是研究团队利用冷原子系综,首次通过单光子干涉在独立存储节点间建立量子纠缠,并在此基础上构建了全球首个基于纠缠的城域多节点量子网络,将量子纠缠网络实验的距离由几十米延长到几十公里。

纠缠效率是量子纠缠网络实验的重要指标,与哈佛大学团队在《自然》上发表的成果相比,中国科大成果的纠缠效率高两个数量级以上,优势明显。

为保密通信提供支撑

哈佛团队取得的重要突破是:首次在SiV色心体系实现了双节点远距离纠缠。与中国科大的几十公里纠缠网络水平相近,哈佛团队先让两个量子存储节点纠缠在一起,再通过光纤链路将这两个节点分开,部署在穿过剑桥、萨默维尔、沃特敦和波士顿的约35公里环路上。这意味着,他们也实现了城域级别的量子通信。

波士顿地区的两个量子存储节点都由金刚石薄片制成,其内部原子结构中有一个缺陷,称为SiV中心。使用SiV中心作为单光子的量子记忆设备,是哈佛团队研究多年的技术路线。它解决了量子互联网理论中的一个难题——无法以传统方式增强信号。根据量子不可克隆原理,一个未知量子态不可能被精确复制,所以量子网络无法采用光纤信号中继器,导致数据很难长距离传输。

基于SiV中心的量子网络节点不仅能捕获、存储和纠缠量子信息位,还能纠正信号丢失,让长距离数据传输成为可能。哈佛团队已将演示网络安装在现有光纤上,展示了创建具有类似网络线路的量子互联网的可行性。

林梅博士认为,在未来可行性验证方面,中国科大团队构建的城域三节点量子网络优于哈佛团队建立的光纤链路。因为后者只有两个节点,而网络雏形至少要包含三个节点,这样才能验证其通信切换的功能——当A、B两个用户在利用量子网络进行通信时,C用户可随时切入,与A或B用户进行通信。

以上内容为资讯信息快照,由td.fyun.cc爬虫进行采集并收录,本站未对信息做任何修改,信息内容不代表本站立场。

快照生成时间:2024-05-20 08:45:16

本站信息快照查询为非营利公共服务,如有侵权请联系我们进行删除。

信息原文地址:

本文转自:合肥晚报中国科大一项研究成果 刷新世界纪录实现百兆比特率的实时量子密钥分发本报讯 3月14日,记者从中国科学技术大学获悉,该校潘建伟院士、徐飞虎教授等与相关单位科研人员
2023-03-15 00:03:00
本文转自:中国工业报 ■ 郑大海近日,国盾量子(688027.SH)发布公告,拟向中国电信全资子公司中电信量子信息科技集团有限公司增发2411
2024-03-26 10:24:00
量子科技 从落地生根到开花结果
本文转自:合肥日报中国科大先进技术研究院量子科学实验卫星、量子通信京沪干线总控中心。中国科大多光子纠缠实验室,科学家正在进行量子计算和量子实验。 在中国科大量子存储实验室,中国
2023-08-22 01:29:00
量子产业大会,给安徽带来了什么?
本文转自:人民网-安徽频道今年,是量子产业大会的第三届。9月23日至24日,由合肥市人民政府、安徽省科学技术厅、量子科技产学研创新联盟、中电信量子集团主办的2023量子产业大会将
2023-09-22 09:55:00
金贤敏 量子计算正加速接近应用爆点
...晚报时间似乎不再匀速流淌。对上海交通大学教授、图灵量子创始人金贤敏来说,从突破光量子基础研究,到将原始创新逐步落地至光子芯片和量子计算,他感到一种越来越强烈的加速度。国家对于
2024-05-21 14:44:00
一粒粒创新种子,如何育成森林
...何育成森林■ 本报记者 鹿嘉惠研发人员正在进行小型化量子卫星地面站与“墨子号”卫星的对接。 (国盾量子供图)声纹减肥机器人。(中科昊音供图)工程师正在进行9微米光纤纤芯的准直
2023-06-29 02:25:00
“量子+”时代何时到来?在合肥量子一条街寻找答案
量子精密测量仪器新质生产力成为2024年全国两会热词,作为经济发展的新起点,各地呈现了发展新质生产力的不同版本。“寻新记”五路记者跨出四川面向全国,我们看见了量子创新发展带来的曙
2024-03-19 11:16:00
中国科大在中红外波段量子纠缠的制备与表征方面取得重要进展
中国科学技术大学郭光灿院士团队在中红外波段量子纠缠的制备与表征研究中取得重要研究进展,该团队史保森教授、周志远副教授及其合作者首次制备了3微米中红外波段时间-能量纠缠光子对并演示
2024-03-12 11:04:00
...二届中国(安徽)科技创新成果转化交易会专项活动——量子信息未来产业峰会在合肥高新区中安创谷全球路演中心成功举办。本次峰会以“铸造量子产业尖峰 引领科创未来发展”为主题,聚焦量
2023-04-28 16:43:00
更多关于科技的资讯: