• 我的订阅
  • 科技

数学家为什么要去重新证明我们已经知道的东西?

类别:科技 发布时间:2023-12-22 10:46:00 来源:大可数学人生工作室
数学家为什么要去重新证明我们已经知道的东西?

许多人是在中学时期完成了自己的第一次数学证明。这是古希腊数学家欧几里得证明的命题:质数有无穷多个。仅需几行文字,只用到整数和乘法这些简单概念。

证明是这样的。假设质数是有限多个,那么把它们都乘起来再加个1,会得到新的一个整数。这个数将引发一个矛盾。这个矛盾说明了质数只能是无限多个。

之后的数学家有一个迷之爱好:不断用不同方法给出这个命题的不同证明。

为什么要这么做呢?其中一个原因,就是好玩儿。另外还有更为重要原因,“我认为娱乐数学和严肃数学之间的界限非常小,” 马里兰大学计算机科学教授威廉·加萨奇(William Gasarch)说。今年早些时候他在网上发布了一个新证明。

加萨奇的证明只是一系列新证明中的最近案例。在2018年,黑山大学的罗梅奥·梅斯特罗维奇(Romeo Meštrović)编制了一份包含近200个“质数无穷多个”的数学史综述。事实上,在解析数论领域,数学家连续变量来研究整数。这样的历史大约起源于1737年,数学巨匠莱昂哈德·欧拉(Leonhard Euler)利用无穷级数1 + 1/2 + 1/3 + 1/4 + 1/5 + …发散,再次证明存在无穷多个质数。

奥地利格拉茨科技大学的数学家克里斯蒂安·埃尔肖尔茨(Christian Elsholtz)最近也发表了一个新证明。他表示,与数学家将简单引理组合成复杂定理,最终获得结论的过程相反。他把这个流程反了过来。“我使用费马大定理,这其实一个非常难证明的定理。然后我用它得出一个非常简单推论。”这样的反向工作或许可以揭示数学的不同领域之间的隐藏联系,他说。

人们似乎互相杠上了,都想搞出一些“荒诞的高级”证明。蒙特利尔大学数学家安德鲁·格兰维尔(Andrew Granville)说道,他也提供了两个新证明。“它必须好玩。做一些技术上炫技的事情并非重点。你之所以想“显摆”,只能是因为它有趣。”

格兰维尔表示,这种友好的比拼实际上有一个严肃的目的。数学家的工作不仅仅是解决抛来的具体数学问题。“数学的创造过程不是仅仅机械式的接受问题,然后机械式地解决它。数学是人们基于已知成果,创造技术和发展思想的方式。”

正如加萨奇所说:“所有的论文,它们从给出质数是无穷全新证明思路开始的,然后过渡到了严肃的数学。你今天看到的还只是质数,明天你就在研究平方密度了。”

加萨奇的证明基于这样一个事实:如果你用有限种的颜色给自然数染色,那么总会存在一对相同颜色的数字,他们加起来之和也被染了相同颜色。这是伊萨伊·舒尔(Issai Schur)于1916年证明的定理。加萨奇利用舒尔定理,证明了如果质数是有限的,那么将存在一个完全立方数(就是形如某个整数三次方的自然数)等于另外两个完全立方数的和。然而,早在1770年,欧拉已经证明不存在这样的三个立方数。这是费马大定理的n = 3情况,该定理假设对于n>2时,方程x^n + y^n = z^n没有正整数解。基于这种矛盾,加萨奇推断出质数必然是无穷多个。

数学家为什么要去重新证明我们已经知道的东西?

格兰维尔在2017年的一个证明中使用了费马的另外一个定理。格兰维尔先引用了巴特尔·伦德特·范德瓦尔登(Bartel Leendert van der Waerden)于1927年提出的一个定理,该定理表明,如果你用有限种颜色给整数染色,那么存在任意长度的同色等差数列。与加萨奇类似,格兰维尔从一个假设开始,即质数是有限的。然后,他使用范德瓦尔登定理找到了一列公差为4、颜色相同的完全平方数。但费马已经证明这样的序列不存在。矛盾!由于如果质数是有限的,这样的序列是存在的,但它却不能存在,因此质数必然无穷多个。格兰维尔的证明是最近第二个利用范德瓦尔登定理的证明,莱文特·阿尔波格(Levent Alpöge)在2015年的一篇论文中也使用了这个定理,他发表了这篇论文的时候还是本科生,现在是哈佛大学的博士后。

格兰维尔特别喜欢埃尔肖尔茨的一篇论文,该论文同样运用了费马大定理以及反证法,即先假设质数只有有限个。与加萨奇一样,埃尔肖尔茨也融入了舒尔定理,尽管方式略有不同。埃尔肖尔茨还提供了另外证明,使用了克劳斯·罗斯(Klaus Roth)于1953年提出的一个定理,该定理表明,密度足够大整数子集必须包含一组长度为3的等差数列。

通过这些方面的工作,一些更深刻甚至实际的数学问题有望得到解答。例如,如果在一个只有有限个质数的环境中,基于大数质因数分解难度的公钥加密体系,是否将变得非常容易破解。埃尔肖尔茨想知道证明质数是无穷多是否与证明破解这种加密体系的难度之间存在某种联系。埃尔肖尔茨表示:“现在看貌似有一些弱关联,如果能看到更深层次的联系拿奖很有趣。”

格兰维尔说,最璀璨的数学往往可以从不同领域和学科的奇异结合中发展出来,并且往往是是在数学家花费多年时间思考较低层次但有趣的问题之后诞生的。他痴迷于把那些看似相距甚远的学科应用于数论学科。在最近的一次论文中,格兰维尔点赞了希莱尔·弗尔斯滕伯格(Hillel Furstenberg)于1955年提出的一种证明方法,该方法使用了点集拓扑学。像阿尔波格一样,弗尔斯滕伯格在他的证明发表时仍然是本科生。他之后取得了卓越的成就,在数学各个分支中取得了优异的成绩。

格兰维尔反问自己,对质数无穷多个的新证明的痴迷,“只是出于好奇,还是在下一盘长远的大棋?”他自问自答道,“我不能告诉你!”

原文作者:Anna Kramer,《量子》杂志特约撰稿人

翻译作者: Math001,哆嗒数学网群友

以上内容为资讯信息快照,由td.fyun.cc爬虫进行采集并收录,本站未对信息做任何修改,信息内容不代表本站立场。

快照生成时间:2023-12-22 12:45:04

本站信息快照查询为非营利公共服务,如有侵权请联系我们进行删除。

信息原文地址:

AI工具将如何改变数学领域
...文转自:科技日报当前,很多机器学习等AI工具正在帮助数学家创建新的理论并解决棘手的问题,这些AI工具正以超越单纯计算的方式改变数学领域。图片来源:英国《自然》杂志网站◎本报记
2023-02-21 09:21:00
黎曼猜想被证明了!
【新智元导读】著名数学家、现年90岁的MichaelAtiyah在海德堡获奖者论坛上发表演讲的论文预览版,宣布世纪数学难题“黎曼猜想”被证明
2023-01-14 03:00:00
《中国人工智能简史》:数学家翻开了中国人工智能研究的第一页
...的学派是符号主义学派,最早一批人工智能科学家多半是数学家和逻辑学家,他们在计算机诞生后把计算机与自己的研究结合起来,从而进入人工智能领域。在中国,同样是由数学家翻开了人工智能
2023-09-04 16:58:00
连续35年,科学家都会收到一个神秘信号,是外星文明吗?
...息只是在持续时间上有规律,它本身没有什么能被解读的东西,甚至还比不上当年转瞬即逝的wow信号,不过也有人认为盾牌座信息是被加密的产物,也许目前人类文明的破译能力,或者说计算机
2024-08-13 10:41:00
...字的著名定理,几个世纪以来一直困扰着数学界。现在,数学家希望开发一种计算机方法,用来证明费马大定理。这是一个雄心勃勃、为期数年的项目,旨在展示计算机辅助数学证明的潜力。法国数
2024-03-25 07:43:00
中国邮政“听劝”!“毕达哥拉斯定理”邮票中文名变为“勾股定理”
...过橘色设计突出前7位与第35位数字,纪念我国南北朝时期数学家祖冲之和德国数学家鲁道夫·范·科伊伦。第二枚“毕达哥拉斯定理” 是平面几何的重要基石,在古代测量和建筑领域应用广泛
2025-02-25 22:19:00
...问题的孩子。但他也是班里唯一一个后来成为享誉世界的数学家和剑桥大学教授的人。正如他所说,他“总是记不住那些看似毫无意义的事情”,但是“对见解形成的过程有良好的记忆力”。郑乐隽
2024-05-17 04:50:00
本杰明·皮尔斯对数学教育的贡献
本杰明·皮尔斯(BenjaminPeirce)是19世纪美国著名的数学家和天文学家。他以其丰富多样的数学成就而闻名于世。本文将深入探究他在数学领域的重要贡献,从群论、代数方程论以
2023-09-03 16:01:00
数学因不严格的论证而得到丰富,很多命题建立在尚未证明的猜想上
...个定理,然后对这个定理就置之不理了。但是,绝大多数数学家会采取另一种态度。他们相信黎曼假设,相信终有一日黎曼假设会得到证明。 所以他们也会相信其所有推论才更靠得住。还可以在理
2023-01-23 10:00:00
更多关于科技的资讯:
WowNow即将亮相CES 2026|以AI驱动的柔性制造,探索消费端创意直连制造的新路径
中国创新科技品牌WowNow宣布,将于2026年1月6日至9日亮相在美国拉斯维加斯举办的国际消费电子展(CES 2026)
2026-01-05 11:04:00
国内多筒血拼正酣!海尔三筒洗衣机泰国亮相填补空白
国内三筒洗衣机市场正上演激烈角逐,消费者对分区洗护的需求推动产品快速普及,各大品牌纷纷加码布局,行业竞争持续升级。海尔三筒洗衣机在热销超30万台
2026-01-05 09:52:00
山东移动泰安分公司圆满完成“你好2026”泰山跨年音乐嘉年华通信保障
鲁网1月4日讯2025年12月31日晚,“你好2026”泰山跨年音乐嘉年华在泰安市泰汶吾悦广场西南侧盛大举行,吸引超过两万名乐迷齐聚一堂
2026-01-05 09:55:00
国产新原料赋能产品创新:一支用“牙齿”成分做成的牙膏
近年来,国产科研力量正在持续推动口腔健康科技进步。从材料源头研发到临床研究验证,一系列应用转化研究不仅展示了国产功效型材料的技术潜力
2026-01-05 10:03:00
“手机随时待命、消息秒回”——新兴职业“秒回师”以其即时响应与情感陪伴的特点,吸引了不少年轻人加入。与此同时,代遛宠物专员
2026-01-05 08:36:00
■王哲娟摘要:在数字化与知识经济时代,企业的竞争边界不断扩展,组织间的关系由单向依附转向多层协同。协同创新成为企业嵌入生态系统
2026-01-05 05:42:00
东南网龙岩1月4日讯(通讯员 詹春艳 林培民)近日,龙岩市新罗区10千伏中新线上空,一场静默而精准的“人机协同”带电作业悄然完成
2026-01-04 23:27:00
蔡高民:颠覆认知!打破西方理论垄断!中国老年学自主知识体系诞生
《全生命周期养能力发展与医养结合:理论和实践》的核心突破,在于建构“养”的元概念、定义与内涵外延,并以此为基础构建了逻辑自洽的三大理论体系
2026-01-04 20:15:00
编者按:周期更迭,变量叠加。站在“十五五”开局之年的关键节点上,各行业如何调整节奏、校准路径、寻找增量?中新经纬广邀多领域学者
2026-01-04 20:21:00
春节临近,年味渐浓。在贵阳,一场不同于传统年货市集的新春活动正在酝酿——它以“创意游乐场”为定位,融合在地风物、潮流文化与青年创造力
2026-01-04 21:50:00
不经意晃动手机,软件立即跳转购物页面。最近,记者实测发现,备受诟病的“摇一摇跳转”广告乱象依然时有发生,困扰着不少用户
2026-01-04 17:59:00
2025年度帆书APP经典热搜榜,精准解锁经典中的成长指南
当“信息过载”成为常态,“选择困难”深入骨髓,我们比任何时候都更需要一个清晰的信号:什么才是值得投入时间的真知?近日,帆书APP根据全年用户收听数据发布的“经典热搜榜”
2026-01-04 14:25:00
黄鹤权据光明网报道,英国《剑桥词典》将2025年年度词汇定为“准社交”,形容个体单方面与名人、虚拟角色或聊天机器人产生的密切连接感
2026-01-04 14:25:00
飞晟科技入选海南省儋州市中小企业数字化转型城市试点服务商
近日,海南省儋州市科学技术和工业信息化局对外公示《儋州市中小企业数字化转型城市试点服务商拟纳入名单(第一批)》。公示名单显示
2026-01-04 15:28:00
抖音生活服务联合南京德基广场落地“心动街区”,电视台直播+明星见面会+打卡活动助力商圈消费
12月30日,抖音生活服务“心动街区”活动联合江苏电视台城市频道零距离栏目发起“心动德基24h·南京跨年在德基”美食专场直播
2026-01-04 15:30:00