• 我的订阅
  • 科技

稚晖君独家撰文:具身智能即将为通用机器人补全最后一块拼图

类别:科技 发布时间:2023-08-28 16:38:00 来源:甲子光年
稚晖君独家撰文:具身智能即将为通用机器人补全最后一块拼图

具身智能新纪元。

在ChatGPT之后,又一个大模型概念火了——具身智能(Embodied AI)。

在学术界,图灵奖得主、上海期智研究院院长姚期智认为,人工智能领域下一个挑战将是实现“具身通用人工智能”;清华大学计算机系教授张钹院士,也在某产业智能论坛上提出,随着基础模型的突破,通用智能机器人(具身智能)是未来的发展方向。

在产业界,微软、谷歌、英伟达等大厂均开展了相关研究,比如谷歌RT-2、英伟达VIMA等。英伟达创始人兼CEO黄仁勋在ITF World 2023 半导体大会上表示,AI下一个浪潮将是“具身智能”。

具身智能作为人工智能发展的一个重要分支,正在迅速崭露头角,成为科技界和大众关注的热门话题,同时在各个领域中展现出巨大的潜力和吸引力。

1. 什么是具身智能?

具身智能通过在物理世界和数字世界的学习和进化,达到理解世界、互动交互并完成任务的目标。

具身智能是由“本体”和“智能体”耦合而成且能够在复杂环境中执行任务的智能系统。一般认为,具身智能具有如下的几个核心要素:

第一是本体,作为实际的执行者,是在物理或者虚拟世界进行感知和任务执行的机构。

本体通常是具有物理实体的机器人,可以有多种形态。本体的能力边界会限制智能体的能力发挥,所以,具有广泛适应性的机器人本体是非常必要的。

随着机器人技术的进步,本体越来越呈现多样化和灵活性。比如,四足机器人可以具有良好的运动能力和通过性,复合机器人则把运动和操作机构整合,具有较好的任务能力;而人形机器人作为适应性更加广泛,通用能力更强的本体形态,得到了长足的进步,已经到了可以商业化的前夕。

本体具备环境感知能力、运动能力和操作执行能力,是连接数字世界和物理世界的载体。

具身智能的第二个要素是智能体(Embodied Agents),是具身于本体之上的智能核心,负责感知、理解、决策、控制等的核心工作。

智能体可以感知复杂环境,理解环境所包含的语义信息,能够和环境进行交互;可以理解具体任务,并且根据环境的变化和目标状态做出决策,进而控制本体完成任务。

随着深度学习的发展,现代智能体通常由深度网络模型驱动,尤其是随着大语言模型(LLM)的发展,结合视觉等多种传感器的复杂多模态模型,已经开始成为新一代智能体的趋势。

同时,智能体也分化为多种任务形态,处理不同层次和模态的任务。智能体要能够从复杂的数据中学习决策和控制的范式,并且能够持续的自我演进,进而适应更复杂的任务和环境。

智能体设计是具身智能的核心。具有通用能力的LLM和VLM等模型,赋予了通用本体强大的泛化能力,使得机器人从程序执行导向转向任务目标导向,向通用机器人迈出了坚实的步伐。

具身智能的第三个要素是数据。“数据是泛化的关键,但涉及机器人的数据稀缺且昂贵。”

为了适应复杂环境和任务的泛化性,智能体规模变的越来越大,而大规模的模型对于海量数据更为渴求。现在的LLM通常需要web-scale级别的数据来驱动基础的预训练过程,而针对具身智能的场景则更为复杂多样,这造成了多变的环境和任务,以及围绕着复杂任务链的规划决策控制数据。尤其是针对行业场景的高质量数据,将是未来具身智能成功应用落地的关键支撑。

具身智能的第四个要素是学习和进化架构。智能体通过和物理世界(虚拟的或真实的)的交互,来适应新环境、学习新知识并强化出新的解决问题方法。

采用虚拟仿真环境进行部分学习是合理的设计,比如英伟达的元宇宙开发平台Omniverse,就是构建了物理仿真的虚拟世界,来加速智能体的演进。

但真实环境的复杂度通常超过仿真环境,如何耦合仿真和真实世界,进行高效率的迁移(Sim2Real),也是架构设计的关键。

2. 具身智能的科研和技术进展

在基于Transformer的大语言模型浪潮带领下,微软、谷歌、英伟达等大厂,以及斯坦福、卡耐基梅隆等高等学府均开展了具身智能的相关研究。

微软基于ChatGPT的强大自然语言理解和推理能力,生成控制机器人的相关代码;

英伟达VIMA基于T5模型,将文本和多模态输入交错融合,结合历史信息预测机器人的下一步行动动作;

斯坦福大学利用LLM的理解、推理和代码能力,与VLM交互并生成3D value map,来规划机械臂的运行轨迹;

谷歌具身智能路线较多,包括从PaLM衍生来的PaLM-E,从Gato迭代来的RoboCat,以及最新基于RT-1和PaLM-E升级得到的RT-2。

稚晖君独家撰文:具身智能即将为通用机器人补全最后一块拼图

谷歌在具身智能的研究上更具有广泛性和延续性。与其他大厂相比,谷歌依托旗下两大AI科研机构,Google Brain和DeepMind(2023年4月两大机构合并为Google DeepMind),在具身智能上研究了更多的技术路线,且各路线之间有很好的技术延续性。

其中基于RT-1研究成果,谷歌融合了VLM(PaLM-E是其中一种)和RT-1中收集的大量机器人真实动作数据,提出了视觉语言动作(VLA)模型 RT-2,在直接预测机器人动作的同时,受益于互联网级别的训练数据,实现了更好的泛化性和涌现性。

从RT-2的实验结果看,一方面,面对训练数据中没见过的物体、背景、环境,RT-2系列模型能够仍能实现较高的成功率,远超基线对比模型,证明了模型有较强的泛化能力。

另一方面,对于符号理解、推理和人类识别三类不存在于机器人训练数据中的涌现任务,RT-2系列模型也能以较高正确率完成,表明语义知识从视觉语言数据中转移到RT-2 中,证明了模型的涌现性能。同时,思维链(CoT)推理能够让RT-2完成更复杂的任务。

任何的训练都需要数据的支撑。目前来看,机器人数据来源通常是真实数据和合成数据。

真实数据效果更好,但需要耗费大量的人力和物力,不是一般的企业或机构能够负担的。谷歌凭借自己的资金和科研实力,耗费17个月时间收集了13台机器人的13万条机器人真实数据,为RT-1和RT-2的良好性能打下根基。

谷歌的另一项研究RoboCat,在面对新的任务和场景时,会先收集100-1000个真实的人类专家示例,再合成更多数据,用于后续训练,是经济性和性能的权衡。

除了数据来源问题,还有一个就是具身智能体的预测如何映射到机器人的动作,这主要取决于预测结果的层级。

以谷歌PaLM-E和微软ChatGPT for Robotics为例,预测结果处于高级别设计层级:PaLM-E实现了对具身任务的决策方案预测,但不涉及机器人动作的实际控制,需要依赖低级别的现成策略或规划器来将决策方案“翻译”为机器人动作。

微软默认提供控制机器人的低层级 API,ChatGPT 输出是更高层级的代码,只需调用到机器人低层级的库或API,从而实现对机器人动作的映射和控制。

还有一种情况就是预测结果已经到了低级别动作层级。例如,RT-2输出的一系列字符串,是可以直接对应到机器人的坐标、旋转角等信息;VoxPoser规划的结果直接就是机器人运行轨迹;VIMA也可以借助现有方法将预测的动作token映射到离散的机器人手臂姿势,即不需要再经过复杂的翻译将高层级设计映射到低层级动作。

3. 具身智能的难点剖析

具身智能作为迈向通用人工智能(AGI)的重要一步,是学术界和产业界的热点,随着大模型的泛化能力进一步提升,各种具身方法和智能体不断涌现,但是要实现好的具身智能,会面临算法、工程技术、数据、场景和复杂软硬件等的诸多挑战。

首先,要有强大的通用本体平台。如何解决硬件的关键零部件技术突破,形成具有优秀运动能力和操作能力的平台级通用机器人产品,将具身本体的可靠性、成本和通用能力做到平衡,是一个巨大的挑战。

从基础的电机、减速器、控制器到灵巧手等各部分,都需要持续进行技术突破,才能够满足大规模商用的落地需求。

同时,考虑到通用能力,人形机器人被认为是具身智能的终极形态。这方面的研发,也将持续成为热点和核心挑战。

其次,需要设计强大的智能体系统。

作为具身智能的核心,具备复杂环境感知认知能力的智能体,将需要解决诸多挑战,包括:物理3D环境精确感知、任务编排与执行、强大的通识能力、多级语义推理能力、人机口语多轮交互能力、long-term记忆能力、个性化情感关怀能力、强大的任务泛化与自学迁移能力等。

同时,具身智能要求实时感知和决策能力,以适应复杂和变化的环境。这要求高速的数据采集、传输和处理,以及实时的决策反应,尤其是LLM所消耗的算力规模巨大,对于资源有限的机器人处理系统将形成巨大的数据量、AI计算能力和低延迟的挑战。

再者,高质量的行业数据将成为巨大挑战。

现实场景的复杂多变,使得现阶段缺乏足够的场景数据来训练一个完全通用的大模型,进而让智能体自我进化。

而且,耦合的本体,需要实际部署到真实环境中,才能够采集数据,这也是和非具身智能的明显不同。

比如,在工厂作业中,由于机器人本体并未参与到实际业务,则很多实际运行数据就无法采集,而大量的人类操作数据虽然可以弥补部分不足,但仍然需要实际业务的数据。

当然,通过大模型的涌现能力和思维链能力,部分任务可以零样本学习到,但对于关键业务,要求成功率,则仍然需要高质量的垂域数据。同时,通过层次化的智能体设计,将不同任务限定到特定领域,则是一个解决泛化和成功率的有效尝试。

最后,通过虚拟和真实的交互,持续学习和进化的能力,则是具身智能演进的重要技术途径。

亿万年的生物演化过程,造就了形态丰富的生命形式。而学习新任务来适应环境的变化,则是持续改进的动力。形态适配环境合适的智能体,则可以快速的学习到解决问题能力,进而更好的适应变化。

但是,由于形态的变化空间无穷巨大,搜索所有可能的选择在有限的计算资源情况下变的几乎不可能。本体的自由度设计,也会物理上约束智能体的任务执行能力,进而限制了控制器的学习效果。

在复杂环境、形态演化和任务的可学习性之间,存在着未可知的隐式关系,如何快速学习到合理的规划和决策能力,则成为具身智能的重要一环。

4. 智元机器人的实践

8月18日,智元机器人在具身智能远征A1的发布会提出了一种具身智脑的概念:

稚晖君独家撰文:具身智能即将为通用机器人补全最后一块拼图

具身智脑EI-Brain(Embodied Intelligence Brain)把机器人的具身智能思维系统分为云端的超脑、端侧的大脑、小脑,以及脑干这样四层,分别对应于机器人任务级、技能级、指令级以及伺服级的能力。

⼤脑⽤于完成前⾯提到的语义级多段推理任务,结合上下文进行任务理解,⽽且如果模型的通识能⼒不满⾜任务需求,还可以借⽤更强的云端超脑的互联⽹能⼒。

小脑则负责结合各种传感器的信息进行运动指令⽣成,就跟⼈类⼀样,⼤家⾛路的时候并不会想着怎么精确地控制每块肌⾁收缩,而是由⼤脑发出⼀个宏观指令后,由⼩脑完成身体的平衡和各种运动学动⼒学的控制,运控算法都跑在这⼀层。

最后在硬件底层,由脑⼲来进⾏精确的伺服闭环控制每个电机⾼效精准地执⾏。

在EI-Brain的设计中,上层大模型聚焦于具体的感知决策和计划生成,不用依赖于具体的机器人载体硬件;下层视控模型和运控算法聚焦于底层的具体场景的特定动作执行,不用决策整个任务如何完成。超脑、大脑与小脑、脑干能够相互解耦,不用相互依赖,实现了具身智能系统的层级划分。

智元远征A1是为了完成重复性的通用任务而设计,设计时考虑了2个非常重要的指标,“任务泛化率”和“任务执行成功率”。

任务泛化率指的是对未见过的任务的泛化能力,是否能够按照上述生成的指令计划进行精准执行。这个指标主要针对是对上层的云端超脑和大脑来说,大模型是否能够对用户各种新说法和新的3D环境进行精确的感知决策和指令计划生成。

任务执行成功率指的是机器人载体在实际物理环境中,执行具体任务的成功率等,这个指标主要针对下层的小脑和脑干来说,视控模型和运控算法是否能够按照上述生成的指令计划进行精准执行。

EI-Brain具身智能系统层级有效保证了这两个指标参数的实现,极大地提升了机器人的智能水平和工作效率,使其在完成复杂任务、泛化任务时,更加得心应手。

类似⾃动驾驶L1到L5的发展过程,全场景适⽤的通⽤机器⼈的实现也不会是⼀步到位的。在技能级模型层⾯,智元机器人定义了⼀系列的元操作(Meta-Skill)库,在元操作库范围限定的这些有限泛化场景内,机器⼈能够⾃主推理决策出端到端完成任务所需要的动作编排。⽽且随着元操作库列表的不断扩充,机器⼈能够胜任的任务空间将呈指数级增⻓,在交互中学习进化,最终实现全场景的覆盖,切⼊千⾏百业。

智元远征A1本体是当前国内通用机器人领域最领先的。智元远征A1形态与人类相似,身高175cm,重量55kg,最高步速可达7km/h,全身49个自由度,整机承重80kg,单臂最大负载5kg。

智元远征A1全身搭载了包含谐波⼀体关节、⾏星伺服、直线驱动器、空⼼杯电机等在内的49个各类执⾏器,也就是说这⼀版机器⼈拥有49个⾃由度。

在硬件层面,智元自研了关节电机PowerFlow、灵巧手SkillHand、反曲膝设计等关键零部件,以此提升具身智能机器人的能力、同时降低成本。

在软件层面,智元自研了AgiROS,是一套机器人运行时中间件系统,在AI感知决策与视觉控制等大模型算法方面,能够实现自主任务编排、常识推理与规划执行等。

未来智元将紧跟算法前沿,尤其是大模型的前沿技术,重视数据原始积累和数据平台建设,形成数据闭环,为算法打下坚实的基础。结合硬件自研优势,以具身智能人形机器人为载体,构建丰富的meta-skills技能库,快速落地相关商业垂域应用场景,在实验室上的学术探索基础上迈出商业落地的最为关键一步。

(封面图来源:智元机器人)

以上内容为资讯信息快照,由td.fyun.cc爬虫进行采集并收录,本站未对信息做任何修改,信息内容不代表本站立场。

快照生成时间:2023-08-28 21:45:05

本站信息快照查询为非营利公共服务,如有侵权请联系我们进行删除。

信息原文地址:

未来机器人智能化可能带来哪些技术发展和社会变革?
在眼下大火的机器人概念中,人形机器人无疑是关注度更高、布局企业更多的热门赛道。除了机器人赛道内的玩家“乐此不疲”地追逐在这个风口,还有越来越多的“跨界选手”想要加入。不可否认的是
2023-10-22 11:56:00
客服系统智能机器人:提升客户服务效率的未来之路
...一些限制,如人员有限和成本上涨。因此,客服系统智能机器人成为企业提高客户服务效率的关键工具。什么是客服系统智能机器人?客服系统智能机器人是一种使用人工智能技术开发的自动化客服
2024-06-22 23:12:00
十余款首发首创产品发布,具身智能机器人成焦点
...控制模型\"星海图G-0\"首发亮相,新一代ROPA骨科智能手术机器人全球首发,机器人大会会客厅展示全球首个具身智能机器人4S店等机器人新业态微缩场景……8月8日,2025世
2025-08-12 16:10:00
客服机器人智能系统:改变未来客户服务的游戏规则
...需求,提供高效、个性化的服务。随着技术的进步,客服机器人智能系统成为改变未来客户服务的游戏规则的颠覆性技术。什么是客服机器人智能系统?客服机器人智能系统是一种由人工智能和自然
2024-06-20 22:34:00
具身机器人 悠然现南山
2023年,南山区机器人产值实现621.19亿元。通讯员 贺志熙 摄深圳商报记者 涂竞玉当人工智能拥有了身体,人形机器人拥有了大脑,人形机器人便是具身智能的最佳实践。4月16日,
2024-04-17 09:53:00
... ■ 中国工业报记者 曹雅丽5月15日至16日,2024广东国际机器人及智能装备发展大会在广东省东莞市举办。大会以“创新驱动,应用赋能”为主题,围绕机器人与智能制造、人
2024-05-21 11:30:00
...版了一份详细的、综合性的调研分析报告【全球智能导览机器人行业总体规模、主要厂商及IPO上市调研报告,2024-2030】。本报告研究全球智能导览机器人总体规模,包括产量、产值
2024-12-30 11:29:00
打造大湾区智能机器人创新发展新高地
东莞企业展出的智能机器人产品文/羊城晚报记者 李洪宝图/羊城晚报记者 王俊伟记者从东莞市工业和信息化局获悉,东莞市近日印发了《东莞市发展智能机器人产业行动计划(2023-2025
2024-01-05 16:19:00
千元内最好的机器人开发者套件来了:地瓜机器人重磅发布RDK X5
9月20日,以“加速智能生长”为主题的“2024地瓜机器人开发者日”活动在深圳成功举办。作为业界领先的机器人软硬件通用底座提供商,地瓜机器人重磅推出面向“机器人+”时代的软硬件产
2024-09-21 09:48:00
本文转自:文汇报场景赋能,智能机器人加速走向应用全国首个智能机器人中试验证平台落沪,为行业提供“加速器”和“安全带” ■根据《上海市促进智能机器人产业高质量创新发展
2024-04-04 05:59:00
更多关于科技的资讯:
全球最大超级电容调频电站在山西成功并网,我国新型储能技术应用取得世界级突破
近日,由深圳市今朝时代股份有限公司提供核心技术与整体解决方案的山西偏关百兆瓦级独立调频电站一期项目顺利并网。该项目是全球首个百兆瓦级大规模应用超级电容混合储能技术的调频电站
2025-09-15 13:46:00
鸿蒙开发者孙晨阳:撬动端侧 AI 开发新可能
在 HarmonyOS 生态快速发展的浪潮中,开发者孙晨阳凭借扎实的技术积累和敏锐的生态洞察力,连续三年在鸿蒙极客松大赛中斩获佳绩——从2023年的《赏金猎人》优秀奖
2025-09-15 13:59:00
齐鲁晚报·齐鲁壹点客户端 李孟霏近日,威海举办好客山东·美食争霸赛,作为本次大型文旅消费季赛事的重要通信支持单位,山东移动威海分公司(以下简称“威海移动”)全力护航本次赛事通信畅通
2025-09-15 12:22:00
泰岳小漫 eSIM 产品,全球连接赋能跨境出行
在eSIM技术普及的浪潮中,神州泰岳旗下泰岳小漫前瞻性布局海外eSIM市场,推出FiRoam eSIM服务跨境人群,为海外用户打造便捷
2025-09-15 09:45:00
华芢生物冲刺港股:PDGF 技术破局医保减负撬动千亿愈合市场
2025 年以来,恒指强势反弹,港股新股市场吸引了全球投资者的目光。华芢生物科技(青岛)股份有限公司正稳步推进港股上市进程——继 2024 年 12 月完成证监会备案后
2025-09-15 09:50:00
【奋进七十年 大厂再出发】大厂:科技创新驱动县域经济活力迸发
河北新闻网讯(刘英、黄蕾)“前不久,我们又获得了‘廊坊市工业设计中心’的荣誉。”9月5日,位于大厂高新区的河北时硕微芯科技有限公司展厅内
2025-09-15 10:15:00
海尔空调全面推进大暖通全流程平台建设
依托大暖通战略布局,海尔空调正以全屋空气解决方案突破行业同质化竞争困局。9月11日,在2025年海尔空气产业第14届营销俱乐部峰会上
2025-09-15 10:24:00
大众网记者 邢晨 梁鹏 烟台报道作为全市网络安全宣传教育的标杆,烟台联通数字化展厅依托先进技术手段与创新传播模式,打造了集“沉浸式体验
2025-09-15 09:19:00
9月4日15时,记者走进石家庄市高新区想象国际小区兔喜生活快递驿站,只见崭新的智能快递柜排列整齐,白色的柜体搭配清晰的触控显示屏
2025-09-15 08:03:00
“以前打包,一天弯腰上百次,考验手又考验腰,现在机器全搞定,咱只要盯着设备运转就行!”近日,在国内办公家具行业头部企业圣奥科技股份有限公司深州生产基地(以下简称“圣奥深州生产基地”)
2025-09-15 07:59:00
体验首家潮流店的独特,感受首个主题展览的魅力,领略首场大秀的震撼……越来越多的消费者逐渐被首店经济吸引。通过首店经济,创新消费场景涌现
2025-09-15 07:13:00
明势、BAI和蚂蚁,AI投资的乐观派、悲观派和中间派聚在一场圆桌上
文|周鑫雨编辑|苏建勋如今的AI投资人,也分“乐观派”和“悲观派”。2025年9月12日,Inclusion外滩大会。在由36氪CEO冯大刚主持的圆桌论坛“AI应用落地首战
2025-09-14 17:16:00
王兴兴、朱啸虎们说了些AI创业真心话
文|周鑫雨 富充编辑|苏建勋2025年9月11日开幕的Inclusion外滩大会,为当下的AI创业者、学者和投资人,攒了一个“真心话”局
2025-09-14 19:30:00
厦门网讯(厦门日报记者 林钦圣 通讯员 江安娜)近日,我市申报的“车路协同·公交智行可视化”项目入选自然资源部、国家数据局联合发布的2025年实景三维数据赋能高质量发展创新应用典型案例
2025-09-14 08:20:00
AnPro®酵母蛋白获美国GRAS认证,定义未来可持续蛋白新标准
近日,安琪公司自主研发的AnPro®酵母蛋白(海外市场命名:AngeoPro®)正式获得美国食品药品监督管理局(FDA)的GRAS认证
2025-09-14 09:00:00