我们正处于一个信息大暴发的时代,每天都能产生数以百万计的新闻资讯!
虽然有大数据推荐,但面对海量数据,通过我们的调研发现,在一个小时的时间里,您通常无法真正有效地获取您感兴趣的资讯!
头条新闻资讯订阅,旨在帮助您收集感兴趣的资讯内容,并且在第一时间通知到您。可以有效节约您获取资讯的时间,避免错过一些关键信息。
7月8日消息,Google 的 AI 研究实验室Google DeepMind 发布了一项关于训练 AI 模型的新研究,Google 声称,该研究将大大提高训练速度和能效,比其他方法的性能高出 13 倍,能效高出 10 倍。
随着有关 AI 数据中心对环境影响的讨论日益升温,新的 JEST 训练方法的出现可谓恰逢其时。
DeepMind 的方法被称为 JEST 或联合示例选择,它以一种简单的方式打破了传统的 AI 模型训练技术。典型的训练方法侧重于单个数据点进行训练和学习,而 JEST 则基于整个批次进行训练。JEST 技术的核心突破在于其独特的联合示例选择机制,该机制通过分析数据批次之间的相互关系,实现了更高效的学习效果。
JEST 技术使用两种模型——学习者模型和参考模型——来共同评估数据批次的可学习性。学习者模型负责捕捉数据中的复杂模式,而参考模型则提供了一种基线,用于衡量数据批次的学习潜力。通过对比两者之间的差异,JEST 能够更准确地识别出哪些数据对模型学习最为关键,挑选出最具学习价值的批次进行训练,从而大幅提高学习效率。
上面的图表显示了 JEST 方法在速度和 FLOPS 效率方面如何超越 SigLIP(用于在图像-字幕对上训练模型的前沿方法),以及超越许多其他方法。(数据来自Google DeepMind )
研究显示,JEST 技术具有广泛的应用前景,可以应用于图像-文本预训练、视觉问答、图像描述、视觉推理、多模态检索等多个领域。它有望推动多模态学习技术的进一步发展,并为人工智能领域带来新的突破。
当然,该系统完全依赖于其训练数据的质量,如果没有人工整理的最高质量的数据集,引导技术就会失效。这意味着,相比其他方法,业余爱好者或业余人工智能开发人员更加难以与 JEST 方法相兼容,因为可能需要专家级的研究技能来整理最初的最高等级的训练数据。
随着有关 AI 数据中心对环境影响的讨论日益升温,科技行业和世界各国政府已经开始讨论人工智能的极端电力需求。JEST 研究的推出可能一定程度上缓解了AI领域的算量焦虑。
2023年,人工智能工作负载约占 4.3 GW,几乎与塞浦路斯全国的年电力消耗相当。到今年6月,一些AI公司已经在考虑利用核电。而且,AI“吞电”速度绝对不会减缓:单个 ChatGPT 请求的耗电量是 Google 搜索的 10 倍,Arm 的首席执行官估计,到 2030 年,人工智能将占据美国电网的四分之一。
据报道,GPT-4o 的训练成本为 1 亿美元,未来更大的模型可能很快就会达到 10 亿美元大关,因此公司很可能正在寻找在这方面节省开支的方法。有人认为,JEST 方法将用于在更低的功耗下保持当前的训练生产率,从而降低 AI 成本并帮助地球。
然而,更有可能的是,资本机器将保持全速,使用 JEST 方法将功耗保持在最大水平,以实超快速的训练输出。成本节约与产出规模,谁会赢?
以上内容为资讯信息快照,由td.fyun.cc爬虫进行采集并收录,本站未对信息做任何修改,信息内容不代表本站立场。
快照生成时间:2024-07-11 11:45:10
本站信息快照查询为非营利公共服务,如有侵权请联系我们进行删除。
信息原文地址: