• 我的订阅
  • 科技

超越扩散模型!自回归新范式仅需2.9秒就生成高质量图像

类别:科技 发布时间:2024-06-27 09:17:00 来源:量子位

STAR团队 投稿自 凹非寺量子位 | 公众号 QbitAI

超越扩散模型!自回归范式在图像生成领域再次被验证——

中科大、哈工大、度小满等机构提出通用文生图模型STAR。

仅需2.9秒就可生成高质量图像,超越当前一众包括SDXL在内扩散模型的性能。

超越扩散模型!自回归新范式仅需2.9秒就生成高质量图像

此外在生成图像真实度、图文一致性和人类偏好上均表现优秀。

超越扩散模型!自回归新范式仅需2.9秒就生成高质量图像

来看看具体是如何做到的?

自回归通用文生图模型STAR

扩散模由于其高质量和多元的生成,一度在文生图领域占有主导地位。

它通过逐步的去噪过程,为图像生成提供了更强的稳定性和可控性,然而也导致生成过程极其耗时。

而自回归模型的潜力,在受到大语言模型启发下,开始在这一领域逐渐被探索。

比如VAR指出是因为自回归模型逐个预测token的行为不符合图像模态的特点,提出“next-scale prediction”范式,将视觉自回归建模为逐个预测更大尺度scale的token map。这一方式避免了原始基于next-token的自回归方案难以建模图像模态的问题,重新为视觉生成定义了新的自回归范式,从而使得生成的图像具有更高的真实度,不过仍然有很多局限,性能仍落后于扩散模型。

作者提出基于尺度的文生图自回归模型STAR,重新思考VAR中的“next-scale prediction”范式。

具体来说,所提出的STAR包括两部分:

增强的文本引导和改进的位置编码,以高效地实现高质量图像生成。

增强的文本引导

为了更好地处理各种复杂的文本描述并生成相应的图像,研究者提出几项关键解决方案:

1、文本特征作为起始token map,根据起始token map生成更高分辨率的token map这不仅增强了模型对新文本场景的适应性,确保模型可以泛化到新的文本提示,从整体上保证了文本描述与生成图像之间的一致性

2、在每个transformer层引入交叉注意力机制,从更精细的粒度控制图像生成,使得生成的图像更加精确地贴合文本。

具体网络格式如下:

超越扩散模型!自回归新范式仅需2.9秒就生成高质量图像

归一化旋转位置编码(Normalized RoPE)

对于next-scale prediction范式,如何利用同一个transformer生成不同尺度的token map是一个重要的问题,随之而来的是如何编码这些token map中的tokens的位置。

传统的正余弦编码难以处理不同尺度的token map,同时编码多个尺度容易导致尺度之间的混淆。

可学习的绝对位置编码需要为每个尺度的token map学习对应的位置编码,导致额外的学习参数,提升了训练难度,尤其是大尺度情况下的训练变得更加困难;除此之外固定个数的位置编码限制了更大分辨率图像生成的可能。

研究者提出二维的归一化旋转位置编码(Normalized RoPE)

超越扩散模型!自回归新范式仅需2.9秒就生成高质量图像

除此之外,这一新的位置编码不需要额外的参数,更易于训练,为更高分辨率图像生成提供了潜在的可能。

训练策略

研究者选择先在256*256图像上以较大的batch size训练生成,随后在512*512图像上微调,以获得512的生成结果。由于归一化位置编码,模型很快收敛,仅需少量微调即可生成高质量512分辨率图像。

相比目前的方法,所提出的STAR在FID,CLIP score和ImageReward上表现优异,体现了STAR良好的生成真实度,图文一致性和人类偏好。除此之外,STAR生成一张512分辨率的高质量图像仅需约2.9秒,相比现有的扩散文生图模型具有显著优势。

具体地,在MJHQ-30k上的FID达到4.73,超越了PixArt-α等模型;CLIP score达到0.291,与SDXL相当:

超越扩散模型!自回归新范式仅需2.9秒就生成高质量图像

在ImageReward benchmark上,STAR达到了0.87的image reward,与领先的PixArt-α相当:

超越扩散模型!自回归新范式仅需2.9秒就生成高质量图像

在人物摄影、艺术绘画、静物、风景等场景下均能获得很好的效果,生成的人脸、毛发、材质达到了令人惊叹的细节:

超越扩散模型!自回归新范式仅需2.9秒就生成高质量图像

总的来说,STAR基于scale-wise自回归的方式,解决了VAR中存在的引导条件有限、位置编码不合理的问题,实现了更高效、性能更好的文本引导图像生成。

广泛的实验证明,所提出的方法在生成图像真实度、图文一致性和人类偏好上均表现优秀。仅需约2.9秒的时间内,在512分辨率图像生成上,实现超越先进的文生图扩散模型(PixArt-α、Playground、SDXL等)的性能。

基于自回归的STAR为目前diffusion支配的文本控制图像生成领域提供了新的可能。

项目网站:https://krennic999.github.io/STAR/

论文链接:https://arxiv.org/pdf/2406.10797

以上内容为资讯信息快照,由td.fyun.cc爬虫进行采集并收录,本站未对信息做任何修改,信息内容不代表本站立场。

快照生成时间:2024-06-27 12:45:19

本站信息快照查询为非营利公共服务,如有侵权请联系我们进行删除。

信息原文地址:

ECCV 2024 | 南洋理工三维数字人生成新范式:结构扩散模型
...Feedforward 3D Generative Model),相比于已有 3D GAN 方法可生成高质量、多样化且视角一致的三维数字人
2024-08-13 09:36:00
北大字节VAR最佳论文、厦大清华亚军,NeurIPS 2024最佳论文出炉
...条件模型,这样既能实现更好的提示词对齐,也能得到更高质量的图像,但代价是多变程度下降。这些效果似乎本质上是纠缠在一起的,因此很难控制。基于此,该团队得出了一个令人惊讶的观察结
2024-12-05 09:47:00
3D大模型助力,15分钟即可训练高质量、个性化的数字人模型
...的人脸动作生成模型,MimicTalk 可以生成相比原有方法更高质量、更具表现力的数字人视频。此外,单个数字人模型的训练时间可以被压缩到 15 分钟以内
2024-11-01 09:27:00
开年“王炸”!智能体再升级,科大讯飞打造办公新范式
...的双重解放。讯飞智文 用1分钟搞定5天的工作量制作一份高质量PPT,从资料搜集、整理到演讲汇报,平均耗时5.5天。全新发布的讯飞智文,从大纲构建、内容提炼、排版设计、配图生成
2025-01-08 17:35:00
撞墙还是新起点?自回归模型在图像领域展现出Scaling潜力
...质量提升幅度不及前两款旗舰模型之间的质量提升,因为高质量文本和其他数据的供应量正在减少,原本的 Scaling Law(用更多的数据训练更大的模型)可能无以为继
2024-11-27 13:32:00
Meta提出“可持续思维链”,让大模型在连续潜空间中推理
...:一个完全开源的大语言模型微软研究院:创建多用途、高质量 3D 资产智源推出视觉条件多视角扩散模型Turbo3D:超快速文本到 3D 生成Meta 提出“可持续思维链”
2024-12-13 09:19:00
全模态对齐框架align-anything来啦:实现跨模态指令跟随
...质量参差不齐的现有偏好数据集不同,Align-Anything 提供了高质量的数据,包括了混合输入和输出中的任何模态,旨在提供详细的人类偏好注释以及用于批评和改进的精细语言反
2024-10-18 09:47:00
科技企业竞逐“大模型”:谁能聊下去?谁更接地气? | 2023世界人工智能大会
...在客户的深入挖掘。生成式AI重构企业软件初创企业第四范式展示了“式说”大模型在多个产业领域的落地。与生成图片、生成海报、生成文案等大家所认知的AIGC领域不同,第四范式则将大
2023-07-06 09:22:00
不要小看「实而不华」的腾讯 AI
...创作引擎:基于腾讯混元的自研图像创作底层模型,输出高质量的 AI 图像生成和编辑能力,为企业客户提供 AI 写真、线稿生图、图像风格化等能力。视频创作引擎:基于多模态算法技术
2024-05-21 21:25:00
更多关于科技的资讯: