• 我的订阅
  • 科技

产业前瞻 | 多位院士技术方向研究及发展路线图

类别:科技 发布时间:2023-06-13 13:30:00 来源:江苏商报

产业前瞻 | 多位院士技术方向研究及发展路线图

我国碳捕集利用与封存技术发展研究

产业前瞻 | 多位院士技术方向研究及发展路线图

碳捕集利用与封存是将二氧化碳从能源利用、工业过程等排放源或空气中捕集分离,通过罐车、管道、船舶等输送到适宜的场地加以利用或封存。碳捕集利用与封存技术,可以实现化石能源利用近零排放,促进钢铁、水泥等难减排行业的深度减排,而且在碳约束条件下,可以增强电力系统灵活性、保障电力安全稳定供应、抵消难减排的二氧化碳和非二氧化碳温室气体排放,是实现碳中和目标不可或缺的重要技术选择。

中国工程院李阳院士研究团队在2021年第6期发表《我国碳捕集利用与封存技术发展研究》一文,对我国碳捕集利用与封存技术水平、示范进展、成本效益、潜力需求等进行了全面评估。文章指出,我国碳捕集利用与封存技术发展迅速,与国际整体发展水平相当,目前处于工业化示范阶段,但部分关键技术落后于国际先进水平。在工业示范方面,我国具备了大规模捕集利用与封存的工程能力,但在项目规模、技术集成、海底封存、工业应用等方面与国际先进水平还存在差距。在减排潜力与需求方面,我国理论封存容量和行业减排需求极大,考虑源汇匹配之后不同地区陆上封存潜力差异较大。在成本效益方面,尽管当前碳捕集利用与封存技术成本较高,但未来可有效降低实现碳中和目标的整体减排成本。为此,文章建议,加快构建碳捕集利用与封存技术体系,推进全链条集成示范,加快管网布局和基础设施建设,完善财税激励政策和法律法规体系。

离岸碳捕集利用与封存技术体系研究

产业前瞻 | 多位院士技术方向研究及发展路线图

离岸碳捕集、利用与封存(CCUS)技术指从沿海大型或近海碳排放源捕集CO2,加压并运输至离岸封存平台后注入海底地质储层中,实现CO2与大气永久隔离或利用其生产价值产品的过程。离岸CCUS技术是沿海国家或地区通过工程方式为实现碳减排而发展起来的解决方案与技术体系,相对于陆上CCUS技术,具有潜在封存空间广阔、封存安全等诸多优势。

厦门大学李姜辉教授研究团队的《离岸碳捕集利用与封存技术体系研究》一文。文章概要回顾了全球及我国离岸CCUS技术的发展需求与产业现状,分析了发展离岸CCUS的技术性和社会性价值;梳理总结了代表性的离岸CCUS技术发展路线及其态势,如CO2工厂捕集、CO2管道运输、CO2海底咸水层封存与驱油利用、CO2化学利用以及其他技术架构。着眼不同技术创新方向面临的共性问题,提出我国离岸CCUS领域未来发展建议:注重陆海统筹战略规划和布局,培养高水平研究团队,加强各发展阶段的基础研究、核心技术研发、成本控制、规模增扩和政策激励等。

微生物电合成:

利用二氧化碳生产中链脂肪酸

产业前瞻 | 多位院士技术方向研究及发展路线图

微生物电合成指通过微生物催化剂利用CO2产化学品的电化学技术,也包含基于微生物电化学技术的有机废物生物炼制,可同时实现碳氢化合物合成、CO2生物利用、可再生能源储存。中链脂肪酸可用作抗菌剂、香料添加剂、动物饲料、生物燃料等,运用微生物电合成生产中链脂肪酸,经济效益高于产甲烷或乙酸,有望耦合现有生物炼制技术,推动微生物电合成实用化。

福建农林大学蒋永等研究人员的《微生物电合成中链脂肪酸》一文。文章总结了微生物电合成利用CO2和有机废物产中链脂肪酸的研究现状与发展趋势,对传统发酵产中链脂肪酸的基本原理和研究进展进行了归纳。首先,概述了微生物电合成产中链脂肪酸的相关报道,重点介绍了多电子供体策略;其次,讨论了微生物电合成利用CO2产中链脂肪酸面临的挑战,并针对产甲烷抑制、产乙酸菌三磷酸腺苷限制、产有机溶剂阶段提供多电子供体有限进行了详细阐述;再次,分析了电化学手段促进有机废物生物炼制产中链脂肪酸的潜力;最后,从多级反应、底物供应、产物提取、微生物代谢路径等角度展望了未来发展方向。

建筑结构隐含碳排放限值预设方法研究

产业前瞻 | 多位院士技术方向研究及发展路线图

绿色建造研究方兴未艾,低碳建筑材料、减量化结构形式、精益施工模式等的研发,有望降低建筑结构的碳排放。生命周期评价等碳排放分析方法虽可以实现面向减碳的多方案比选,但在应用中,对碳排放量最小化的追求将一定程度制约建筑结构设计方案的多样性,可能对建筑结构的安全性、使用性能等其他维度属性造成不利;同时,尚难以确保现有可选低碳方案可满足社会低碳可持续转型需求。因此,有待规范和提出建筑结构隐含碳排放限值,将社会碳减排路径的预期目标需求映射至建筑结构单体设计,为建筑结构设计减碳水平的衡量与优化提供定量依据。

中国工程院肖绪文院士、朱合华院士研究团队《建筑结构隐含碳排放限值预设方法研究》一文。文章指出,建筑隐含碳排放指建材生产、施工、维护、拆除、处置等过程发生的碳排放,隐含碳排放限值是建筑结构碳排放量化调控与减碳目标保障的关键指标。文章从社会“碳中和”所需减碳路径出发,依据建筑结构保有与需求量中的新建与既有结构构成比例,提出减碳目标分解方法,为既有结构低碳维护与新建结构低碳设计提供与宏观年度减碳需求相匹配的限值预设依据。依托“双碳”目标的减碳需求构建行业预期发展情景,在维持现状、常规预估、拆除限制、减量预估四类典型情景下,得出了2022年我国新建建筑结构隐含碳排放限值;给出了2022—2060年建筑结构建造与维护碳排放限值的变化趋势,厘清了新建结构总量控制、既有结构延寿等减碳措施促使结构单体隐含碳排放限值宽松的成效。进一步从概率化调控、区域特征量化、可操作性、数据驱动优化等方面,提出了建筑结构隐含碳排放限值设定的相关建议。

表面"彩虹"上的超分辨率光谱位移传感

产业前瞻 | 多位院士技术方向研究及发展路线图

基于成像的传感技术是实现生物或化学方面一些重要信息可视化的主要工具。然而,由于经典光学存在衍射极限,为了实现更好的成像能力,传统的光学成像系统通常需要庞大的体积,并且价格昂贵。微型纳米等离子体结构中纳米尺度上的超慢波可以改善光与物质的相互作用,其独特的潜力备受关注。特别地,超材料中光的“彩虹”储存和渐变的等离子体光栅结构,为在芯片上操纵光开辟了全新的、有吸引力的方法。

中国工程院院刊《Engineering》2022年第10期发表美国纽约州立大学布法罗分校Gan Qiaoqiang教授研究团队的《表面"彩虹"上的超分辨率光谱位移传感》一文。文章报道了一种特殊的可以捕获“彩虹”的超表面,并将其应用于芯片光谱仪和传感器。结合超分辨图像处理,通过低设置4×光学显微镜系统可分辨出等离子体“彩虹”捕获超表面上35 nm范围内共振位置的位移,同时该超表面的面积小至0.002 mm2。这种可实现高效耦合的“彩虹”等离子体共振空间操纵的独特特征为小型化片上光谱分析提供了一个新的平台,其光谱分辨率为0.032 nm波长偏移。通过使用该低设置4×光学显微镜成像系统,文章展示了A549外泌体的生物传感分辨率为1.92×109个∙mL-1,并使用外泌体表皮生长因子受体(EGFR)的表达值来区分患者样本和健康对照样本,从而展示了一种精确特异性生物/化学传感检测应用的新型片上传感系统。

精简指令集架构加速芯片研发

产业前瞻 | 多位院士技术方向研究及发展路线图

作为流线型计算机芯片指令集架构,第五代精简指令集计算机(RISC-V)具有设计简洁、模块化、开源和有丰富的软件生态,现已进入了高速发展阶段,不仅可以用于定制处理器,还可以用于定制芯片,应用前景广阔。

《精简指令集架构加速芯片研发》文章报道了RISC-V的研究及应用进展情况,介绍了RISC-V在推动芯片研发方面的潜力,分析了当前RISC-V与定制机器学习加速技术组合后用于智能芯片研发方面的进展。文章指出,RISC-V的发展前景广阔,但也面临一些挑战,如基于RISC-V的新型软件编译器、处理器和计算机设计必须从头开始建立,这是一项耗时而昂贵的工作;尽管RISC-V已经得到了几个Linux发行版的支持,如Ubuntu、Debian、FreeBSD、NetBSD和OpenBSD,但还没能适应其他一些广泛使用的操作系统。

来源:中国工程院院刊

以上内容为资讯信息快照,由td.fyun.cc爬虫进行采集并收录,本站未对信息做任何修改,信息内容不代表本站立场。

快照生成时间:2023-06-13 16:45:05

本站信息快照查询为非营利公共服务,如有侵权请联系我们进行删除。

信息原文地址:

...人民政协报《中国制造业重点领域技术创新绿皮书—技术路线图(2023)》发布八大领域将步入世界领先记者 高志民《&
2024-01-11 02:06:00
立足科技前沿 服务学术同行
...,围绕制造前沿和国家重大需求,推荐专家参与制造相关路线图撰写,连续三年为中国科学技术协会提交政策建议报告,采用领衔带新晋模式,开展热点方向青年科学家沙龙、研究生/博士后论坛等
2024-06-21 03:36:00
...创新力量逐步形成。前瞻规划,制定质量共性技术发展“路线图”制定产业领域质量共性技术发展路线图,是开展质量创新联合体工作的主要任务之一。以光电产业质量创新联合体为例,作为苏州市
2023-07-29 00:04:00
本文转自:天门日报近日,工业和信息化部、科技部、交通运输部、文化和旅游部等部门联合印发《关于推动未来产业创新发展的实施意见》,提出到2025年,未来产业技术创新、产业培育、安全治
2024-02-20 00:40:00
...政协报全国政协常委杨华勇:尽快制定智能制造国际标准路线图本报记者 李元丽《&nbsp人民政协报 》 (&
2024-03-26 01:01:00
...州市召开新闻发布会,介绍纯电动新能源汽车产业链技术路线图相关情况。据介绍,今年初,柳州市召开投资促进工作大会暨产业大招商三年攻坚行动推进会,会上提出编绘园区产业链技术结构图的
2022-12-14 07:49:00
中新经纬2月2日电 题:未来产业发展路线图出炉,哪些企业迎来发展机会?作者 罗军 全球科技创新论坛秘书长近日,工业和信息化部、科学技术部和国务院国资委等七部门联合发布《关于推动未
2024-02-02 19:27:00
...未来能源、未来健康等备受瞩目【关注2024中关村论坛】路线图更加明晰,未来产业触手可及本报记者 时斓娜《工人日报》(2024年04月29日 04版)2024中关村论坛年会持续
2024-04-29 03:17:00
“新三样”释放新动能 制造强国建设稳中有进
...合编著的《中国制造业重点领域技术创新绿皮书——技术路线图(2023)》(以下简称《技术路线图》)也于同日发布。《技术路线图》预计,到2025年,信息通信设备、先进轨道交通装备
2023-12-29 14:39:00
更多关于科技的资讯:
海信与福耀科技大学战略合作布局具身智能机器人
8月20日,海信集团与福耀科技大学与签署战略合作框架协议。在过去3年深入合作的基础上,双方将在人才培养、科技创新、人员交流合作等领域开展深层次合作
2025-08-22 20:49:00
数据应用大变身
没有方向盘、没有后视镜,它是暗藏玄机的“洋芋巴士”,圆润的车身线条如一颗流动的“科技土豆”。无人驾驶小巴(Robobus)由PIX Moving打造
2025-08-22 21:57:00
南报网讯(记者张希)近日,睿众博芯总部项目在江宁开发区九龙湖国际企业总部园开业,成为江宁开发区“招投联动”模式的成功典范
2025-08-22 07:39:00
“数聚江宁 数领未来”论坛在宁举办多措并举,亮出“数据强基”组合拳南报网讯(记者孙秉印通讯员何俏闵子豪)第九届未来网络发展大会“数聚江宁数领未来”论坛昨天在江宁召开
2025-08-21 08:16:00
●黄伟伟鼓浪屿、园博苑等景区游人如织,演唱会、小剧场一票难求,博物馆、科技馆门庭若市,毕业游、亲子游不断升温……厦门,为火热的暑期文旅经济再添一把“火”
2025-08-21 08:31:00
厦门外贸优品秀出硬实力 创意快闪活动在高崎机场启幕
体育器材企业参与快闪活动,图为工作人员向旅客介绍产品。 (厦门日报记者 卢剑豪 摄)厦门网讯 (厦门日报记者 吴晓菁)18日
2025-08-21 08:31:00
近日,国家广播电视总局印发实施《进一步丰富电视大屏内容 促进广电视听内容供给的若干举措》。《若干举措》强调,要多措并举加强内容建设
2025-08-21 08:39:00
厦门网讯 (厦门日报记者 何无痕)前天,福建省首届“青春之歌”创业创新大赛厦门选拔赛举行,经过激烈角逐,“高精度大功率激光精密制造机器人研发及产业化”“智剪工坊——AI 直播切片
2025-08-21 09:02:00
“新区外贸何以逆势增长”系列报道①丨沂河新区企业“出海”记
当下,“出海”已成为中国制造企业的核心关键词——这不仅是扬帆远航的必然方向,更是转型升级的必由之路。在此背景下,沂河新区交出的外贸答卷尤为亮眼
2025-08-21 09:14:00
汽车地毯的“绿色密码”:坤泰股份用创新编织低碳未来
大众网记者 王瑜 摄影 胡斌 通讯员 刘丽丽 烟台报道在全球积极践行绿色发展理念、大力推进“双碳”战略的当下,各行各业都在探索绿色低碳转型之路
2025-08-21 09:51:00
民宿托管如何稳定收益?旭客用组合拳拆解空置率
很多房东都有这样的困扰:做日租,旺季像“爆单”,淡季却惨淡;做长租,收益总觉得低了一截;想做短租,频率又不稳定。其实,问题不在房子
2025-08-21 10:11:00
伴鱼成立十周年,创始人黄河发布内部信:打造极致的个性化教育
2025年8月20日,在线教育领域的知名企业伴鱼迎来了其成立十周年的里程碑时刻。在这个具有特殊意义的日子,伴鱼创始人兼CEO黄河发布了以“Evolving Speed is Everything”(进化速度决定一切)为核心的全新主题
2025-08-21 10:21:00
满足“健康”与“美”的时代新需求 稳健医疗荣膺2025“西普金奖”
2025年8月16日-21日,中国健康产业(国际)生态大会(英文缩写CPEO,以下简称西普会)在海南博鳌拉开帷幕。本届峰会以“快蜕变
2025-08-21 10:50:00
8月20日,喜临门(603008.SH)发布2025年半年度报告,上半年公司实现营业收入40.21亿元,同比增长1.59%
2025-08-21 10:52:00
从工业端到消费端 智能机器人加速融入生活
编者按:IFR(国际机器人联合会)最新数据显示,2024年中国机器人专利申请量占全球总量67%,人形机器人的运动控制与灵巧操作技术取得关键性突破
2025-08-21 11:05:00