我们正处于一个信息大暴发的时代,每天都能产生数以百万计的新闻资讯!
虽然有大数据推荐,但面对海量数据,通过我们的调研发现,在一个小时的时间里,您通常无法真正有效地获取您感兴趣的资讯!
头条新闻资讯订阅,旨在帮助您收集感兴趣的资讯内容,并且在第一时间通知到您。可以有效节约您获取资讯的时间,避免错过一些关键信息。
中新网北京7月27日电 (记者 孙自法)国际学术期刊《自然》最新发表一篇计算机科学论文指出,用人工智能(AI)生成的数据集训练未来几代机器学习模型可能会污染它们的输出,这个概念称为“模型崩溃”。
该研究显示,原始内容会在AI数代内变成不相关的胡言乱语,显示出使用可靠数据训练AI模型的重要性。
生成式AI工具越来越受欢迎,如大语言模型等,这类工具主要用人类生成的输入进行训练。不过,随着这些AI模型在互联网不断壮大,计算机生成内容可能会以递归循环的形式被用于训练其他AI模型或其自身。
论文第一作者兼共同通讯作者、英国牛津大学Ilia Shumailov和同事及合作者一起,用数学模型演示了AI模型可能会如何出现模型崩溃。他们证明了一个AI可能会忽略训练数据中的某些输出(如不太常见的文本),导致其只用一部分数据集来自我训练。
随后,论文作者还研究了AI模型会如何应对主要用人工智能生成的训练数据集。他们发现,给模型输入AI生成的数据会减弱今后几代模型的学习能力,最终导致模型崩溃。他们测试的几乎所有递归训练语言模型都容易出现重复短语。比如,一个用中世纪建筑文本作为原始输入的测试到第九代的输出已经是一串野兔的名字。
论文作者指出,为了让人工智能成功使用其自身输出进行训练,本次研究认为用AI生成数据训练一个模型并非不可能,但必须对数据进行严格过滤。与此同时,依赖人类生成内容的科技公司或许能比竞争对手训练出更高效的AI模型。(完)【编辑:甘甜】
以上内容为资讯信息快照,由td.fyun.cc爬虫进行采集并收录,本站未对信息做任何修改,信息内容不代表本站立场。
快照生成时间:2024-07-27 17:45:03
本站信息快照查询为非营利公共服务,如有侵权请联系我们进行删除。
信息原文地址: