• 我的订阅
  • 科技

我国科学家发现全新高温超导体

类别:科技 发布时间:2023-07-14 06:10:00 来源:人民资讯

本文转自:人民日报

7月12日,国际期刊《自然》刊登中山大学教授王猛团队主导的科学成果:首次发现一种在液氮温区压力下超导的镍氧化物超导体。这是继铜氧化物之后,科学家发现的第二种在液氮温区超导的全新材料,也是我国科研人员在高温超导领域取得的一项突破性成果,有望推动破解高温超导机理,使设计和预测高温超导材料成为可能,实现更广泛更大规模的产业化应用。

“生长这根几厘米长的料棒,我们花了两年多的时间。”在中山大学物理学院实验室,王猛指着橱柜里看似不起眼的黑色料棒说。

这件高温超导新材料单晶样品,此前在王猛团队自主搭建的高压实验研究平台以及华南理工大学、中国科学院物理研究所、北京同步辐射装置的实验研究中,已确定在压力下转变为液氮温区的高温超导体,超导转变温度高达80K(约零下192.15摄氏度)。理论方面,团队则与清华大学教授张广铭、中山大学教授姚道新合作指出了一种导致高温超导的可能因素。

在此之前,铜氧化物是唯一在液氮温区超导的固体材料。该成果在审稿阶段于科研论文预印平台公布后,即引起了凝聚态物理研究领域的关注,在国际上成为研究热点,在一个月左右的时间里已有10余篇相关理论和实验工作相继公布。王猛团队的论文也得到了《自然》审稿人的高度评价,认为它“具有突出重要性”,是“开创性发现”。

自1911年科学家首次发现汞的零电阻现象之后,人类在超导领域的研究已历百年,但时至今日,这仍是一个充满发现与挑战的领域。超导材料具有零电阻、抗磁性,在医疗、电力、能源、交通、信息、量子计算、精密测量等方面已有重要应用,比如地月距离高精度测量用的就是超导单光子探测技术,量子计算用的是超导量子比特,以及医院里常见的核磁共振成像仪等。但超导电性往往在40K以下的温度发生,严重限制了超导材料的应用。

因此,科学家们不断追求发现超导转变温度进入液氮温区的超导材料。液氮廉价而易得,进入液氮温区,意味着更容易达到超导条件,在应用方面具有更大潜力。

1986年,瑞士科学家率先发现一种在35K超导的铜氧化物,后经多国科学家共同努力将超导转变温度提高到了77K(即进入液氮温区)以上。如今,新的高温超导材料体系被中国科学家发现,这为世界超导研究开辟了新领域。

“科学家在铜氧化物超导电性研究中掌握了很多实验现象和规律,然而与高温超导的因果关系无法确定。”张广铭认为,镍氧化物超导体具有不同于铜氧高温超导体的晶体结构和电子结构,今后科学家可以在这一新的材料体系中进行研究,使设计和预测高温超导材料成为可能。

“目前,该单晶样品需要在14吉帕压力下才能实现超导,我们团队正在攻关,希望生长出在常压下液氮温区超导的镍氧化物超导体。”王猛说。

《 人民日报 》( 2023年07月14日 13 版)

以上内容为资讯信息快照,由td.fyun.cc爬虫进行采集并收录,本站未对信息做任何修改,信息内容不代表本站立场。

快照生成时间:2023-07-14 08:45:05

本站信息快照查询为非营利公共服务,如有侵权请联系我们进行删除。

信息原文地址:

“他们”为什么获奖
...现了界面增强的高温超导电性,这是1986年铜氧化物高温超导体被发现以来,常压下超导转变温度最高的超导体,同时也为探究高温超导机理开辟了全新途径。
2024-06-25 01:15:00
这种悬浮在轨道上的材料,我国又有新突破!
...上。眼前这块冒着气、悬浮在轨道上奔跑的材料就是高温超导体。超导是某种材料在温度降低到某一临界值以下电阻为零并且具备完全抗磁性的物理现象,在众多高技术领域拥有巨大应用潜力。南方
2025-02-18 07:39:00
...a2PrNi2O7中,实现了块体高温超导电性,并揭示了镍基高温超导体的结构起源。该研究由中国科学院物理研究所程金光研究员团队和周睿研究员团队联合国内外多个研究团队完成,相关成
2024-10-10 05:37:00
...的一个范例。“能隙的产生是超导的标志性现象。在常规超导体中,能隙存在于超导相变温度以下。随着铜氧化物高温超导体的发现,即使在超导相变温度以上,能隙仍然能够被观测到,这种现象被
2024-02-08 04:43:00
中国科学家发现液氮温区镍氧化物超导体 有望破解高温超导机理 【中国科学家发现液氮温区镍氧化物超导体 有望破解高温超导机理】财联社7月12日电,《自然》杂志7月12日刊登中山大学王
2023-07-13 08:56:00
中国散裂中子源“高能非弹谱仪”正式亮相,预计明年投入使用
...然》杂志上发文,报道在全球率先发现新型双层镍氧化物超导体引起国内外研究人员高度关注。“高能非弹谱仪有可能为高温超导机理研究带来全新的认识。”王猛介绍,高能非弹谱仪正式投入使用
2023-11-13 09:58:00
...有高温超导电性。此前,科学家还发现了铜基、铁基高温超导体,通过比较三者的电子结构,可以深入理解高温超导电子配对的机制,为破解高温超导机理提供“钥匙”。最近,从探索科学前沿到关
2025-03-03 05:49:00
“超导斗士”赵忠贤:五十年铸就超导强国梦,培养出四十多名博士
...。科学家所要做的就是找到高温(比23K温度相对要高的)超导体材料。不得不说赵忠贤十分有勇气,他曾在《物理》杂志上直言超导体的临界情况可达40-80K,在当时几乎没人敢这么想,
2022-12-22 05:02:00
全球率先发现!中国科学家发现液氮温区镍氧化物超导体
...团队与其他单位合作的成果:首次发现液氮温区镍氧化物超导体。据了解,这是由中国科学家率先发现的全新高温超导体系,是人类目前发现的第二种液氮温区非常规超导材料,将有望推动破解高温
2023-07-13 17:26:00
更多关于科技的资讯:
京东达沃斯公布数据:“AI”搜索量去年激增超百倍,AI消费迎来“爆发元年”
世界经济论坛2026年年会(冬季达沃斯年会)1月19日在瑞士达沃斯开幕。京东集团创始人、京东集团董事局主席刘强东,京东集团SEC副主席
2026-01-22 20:02:00
2026年最新AI修图软件:三款工具提升摄影后期效率
AI修图技术已经从简单的滤镜应用发展为能够深度理解图像内容并智能优化的复杂系统。根据2025年的摄影行业调,,约95%的专业用户已经将一键式AI修图纳入工作流程
2026-01-22 17:19:00
匠心守品质 订单跨山海 普定萨伽冲刺首季“开门红”
新年伊始,普定工业园区内,贵州萨伽乐器有限公司生产车间一派繁忙景象。机器高速运转,轰鸣声此起彼伏,工人们在各条生产线上有条不紊地穿梭作业
2026-01-22 18:08:00
合肥轨道5号线云谷路站添新“员工”!机器人组队提供“无感服务”
大皖新闻讯 无需排队咨询、自助办结票务、语音精准导航……1月21日,合肥轨道机器人创新项目发布会召开,全国首创全空间机器人智慧调度平台同步亮相
2026-01-22 18:58:00
中国网1月22日讯 据“工信微报”微信公众号消息,为深入贯彻落实党中央、国务院决策部署,加快形成全国算力资源“一本账”
2026-01-22 19:11:00
除冰不用人!安徽“小黄人”“小蓝人”打响电网智能除冰战
大皖新闻讯 寒冬时节,皖南山区和大别山银装素裹。对于电网人来说,这不仅是美景,更意味着严峻考验。输电线路覆冰,如同给电网“血管”套上枷锁
2026-01-22 19:31:00
以赛促创!激活“AI+制造”新动能
江南时报讯 1月16日,2026年(第十七届)阳澄湖创客大赛行业赛——人工智能OPC和高端装备制造专场在中国计量大学国家大学科技园河庄数智产业园成功举办
2026-01-22 18:06:00
1月下旬,浙江高校陆续进入考试周。记者注意到,如今不少高校课程的期末考核,早已跳出“考试、论文、报告”的传统“三件套”
2026-01-22 16:55:00
追觅集团成为总台2026年春晚智能科技生态战略合作伙伴
中国青年报客户端讯(中青在线记者 朱仪杰)1月21日,中央广播电视总台与追觅集团共同举办签约活动,宣布追觅集团正式成为总台《2026年春节联欢晚会》智能科技生态战略合作伙伴
2026-01-22 14:15:00
初瑞雪“广货行天下”直播专场销售额破亿,打响广货新年“开门红”
1月21日,广东省“广货行天下”春季行动重点活动——辛选集团“广货行天下”首场直播正式开启,由辛选集团董事长、快手头部主播初瑞雪带队直播
2026-01-22 14:57:00
认养一头牛官宣品牌代言人赵丽颖
1月22日,认养一头牛正式官宣演员赵丽颖成为品牌代言人。此次合作,不仅是“国民演员”与“新国民品牌”的默契牵手,更是品牌“产业深耕”与代言人“专业沉淀”的精神共振
2026-01-22 15:00:00
无源物联 智联未来丨无源物联“入住”急诊科重塑抢救流程
“2楼库房对门2台呼吸机可用,1楼综合抢救室有3台输液泵可用……”河北医科大学第三医院急诊科护士正通过急诊急救设备管理系统查询附近可用的急救设备
2026-01-22 15:29:00
智象未来创始人兼首席执行官梅涛博士当选2025 ACM Fellow
1月21日,国际计算机学会(Association for Computing Machinery,ACM)公布2025年度ACM Fellow名单
2026-01-22 16:09:00
天津市优秀基层理论宣讲员风采展示
2026-01-22 15:49:00
浙江温州:人形机器人上岗忙 乐清制造添“智”劲
人形机器人走到生产线前抬起双手,准确握住托盘的把手,提起装满产品的物料箱,滑行移动至车间一端的检验窗口,将产品交付给检验人员受检……1月21日
2026-01-22 15:29:00