• 我的订阅
  • 科技

科学家研发全新磁控变形材料,不用触碰也能移动物体

类别:科技 发布时间:2024-12-30 09:18:00 来源:DeepTech深科技

当我们想要移动物体时,通常会用手或机械臂去抓取。但如果是液滴这样的易碎品,或者处在狭小空间里的物品呢?

近日,美国北卡罗来纳州立大学的科研团队带来了一个新的解决方案。他们开发出一种能随磁场变形的新型超材料(metamaterial),无需直接接触就能操控物体,不仅打破了传统抓取方式的局限,更为精密操控领域带来了全新的可能性。

科学家研发全新磁控变形材料,不用触碰也能移动物体

(来源:资料图)

“我们面临着两个主要挑战。”研究人员解释说,“首先是如何移动那些无法用夹持器抓取的物体,比如易碎品或在密闭空间中的物品。其次是如何利用磁场来远程抓取和移动非磁性物体。”

为了应对这些挑战,研究团队将磁场控制与日本剪纸艺术“kirigami”的原理相结合,借此开发出一种超材料薄片,这种薄片由弹性聚合物制成,内部嵌入了磁性微粒,并在表面精心设计了特殊的切割图案。

该论文的主要作者、现任宾夕法尼亚大学博士后研究员 Yinding Chi 指出:“切纸设计对这种超材料薄片至关重要,因为它在不牺牲材料本身刚度的前提下,提高了材料的柔韧性。这使我们能够在不损失机械强度的情况下,显著增强材料的变形能力。”

在开发过程中,研究团队面临着一个看似矛盾的问题:如何让材料既容易变形又足够坚固以承载重物?

团队通过使用磁性弹性体、切纸(原理)、气球和磁铁的独特组合最终找到了答案。他们首先制作了直径 5 毫米、厚度 265 微米的磁性弹性体圆盘,将其置于可充气膜上,像气球一样充气使其形成圆顶形状,然后进行磁化处理,最后恢复到原来的平坦状态。

科学家研发全新磁控变形材料,不用触碰也能移动物体

图 | 材料示意图(来源:论文)

这种创新设计让研究人员可以通过控制磁场的方向,使薄片表面产生类似海浪般的起伏运动。而通过调节磁场强度,则可以精确控制“波浪”的高度。

研究人员表示:“通过控制超材料薄片表面的运动,我们可以移动各种类型的物体,无论是液滴还是平板玻璃。这种操控方式的精确性和适应性让人印象深刻。”

在深入研究过程中,团队还发现了一些意想不到的特性。最初的圆盘在磁场作用下只能隆起略高于 1 毫米,而且材料的相对较低刚度限制了其承重能力。

科学家研发全新磁控变形材料,不用触碰也能移动物体

图 | 通过隆起来移动水滴(来源:资料图)

为了解决这个问题,研究人员使用激光切割机在圆盘上制作了类似切纸艺术的图案。这个改进带来了惊人的效果,带有正交切割的圆盘在磁场作用下能够达到 4 毫米的隆起高度,这比没有切割的圆盘高出一倍多。

更令人惊喜的是,这种设计不仅没有降低材料的承重能力,反而在磁场作用下使其刚度提高了 1.8 倍。

理论上,引入切割应该会显著降低材料的杨氏模量(衡量材料在应力下的刚性程度的指标),使圆顶的结构刚度降低四倍。但实际效果却截然相反,这是因为传统计算公式没有考虑到磁场的影响。

当切割的长宽比为 6 时,材料对磁场的响应性显著提升,进而增强了磁场诱导刚化效应。

实验证明,这种带切割的圆顶能够将重达 43.1 克(相当于自身重量 28 倍)的物体提升到 2.5 毫米的高度并稳定保持。为了展示这项技术的实际应用潜力,研究团队制作了一个 5×5 的圆顶阵列,通过底部可移动的永磁体支柱进行控制。

科学家研发全新磁控变形材料,不用触碰也能移动物体

图 | 通过隆起来移动其他物体(来源:资料图)

这个系统能够精确地移动水滴、薯片、树叶,甚至小木板,还能转动培养皿。更令人兴奋的是,其表面对磁场变化的响应时间不到 2 毫秒,这一速度甚至可以与游戏显示器相媲美。

这项技术的应用前景十分广阔。在实验室,它可以用于精确输送和混合微量液体,这对于生物医学研究和化学实验具有重要意义。在虚拟现实领域,其快速响应的特性使其有望用于触觉反馈控制器,模拟不同物体的触感和质地。

研究人员表示:“虽然我对触觉技术还比较陌生,但考虑到我们可以通过调节磁场来改变表面的刚度,这应该能够帮助我们重现不同的触觉感知。”

目前,研究团队正致力于解决最后一个技术难题:如何提高分辨率。如果将每个圆顶比作显示器的一个像素,目前的分辨率还相对较低。

研究人员表示,通过先进的制造技术,有望将圆顶的直径缩小到约 10 微米。不过,在如此小的尺度下实现驱动是一个挑战。

除了继续研究小型化,研究团队还在探索这项技术在游戏和辅助设备等领域的应用。

这项创新不仅展示了材料科学的最新进展,也为未来的精密操控和人机交互开辟了新的可能性。它证明,有时候最优雅的解决方案不是让抓握更加有力,而是更聪明地思考如何完全避免接触。

参考资料:

https://arstechnica.com/science/2024/12/magnetic-shape-shifting-surface-can-move-stuff-without-grasping-it/

https://mse.ncsu.edu/2024/12/magnetically-controlled-kirigami-surfaces-move-objects-no-grasping-needed/

https://www.science.org/doi/epdf/10.1126/sciadv.adr8421

排版:希幔

以上内容为资讯信息快照,由td.fyun.cc爬虫进行采集并收录,本站未对信息做任何修改,信息内容不代表本站立场。

快照生成时间:2024-12-30 12:45:02

本站信息快照查询为非营利公共服务,如有侵权请联系我们进行删除。

信息原文地址:

人类真的可以用脑电波控制物体吗?
...被放置在大脑附近的电极所检测。通过分析这些电信号,科学家可以读取脑电波。 这些脑电波构成了意念控制物质的生理基础。意念控制物质就是通过解析这些脑波来操纵物质。人类对脑波的发
2024-11-14 10:36:00
地球重达60万亿亿吨,为什么还会飘在太空中,而没有向下坠落?
...^2,在后续的计算中,得出地球质量约5.977x10^24kg,和现代科学家精确计算的5.965x10^24kg基本差不多
2024-06-19 13:52:00
中国科学家发现新技术,配合超音速鱼雷,让美国核潜艇无处藏身
...度等都会对声纳波的传播产生影响。为了克服这个问题,科学家们开始研究卫星探测技术。卫星可以捕获到微弱的振动信号,并通过联网的方式,实时传输给指挥中心。 总结来说,就是潜艇提升
2023-08-16 11:21:00
2亿光年外有个恐怖引力,数万星系都在被吸引!正体到底是什么?
...常强大的引力,可以影响周围数百万个星系的运动。而当科学家们用望远镜对准那个方向时,却什么也看不见,原来巨引源的位置刚好被银河系的银心挡住了,那里有密集的恒星和大量的星云,望远
2023-10-19 16:47:00
科学家研发人造吸盘,可用于机器人抓取与攀爬
附着,是生命体重要的能力之一,比如人类的抓握、章鱼的吸附等。真空吸附,是一种非常特殊的附着方式。相比于手的抓握,它不需要完全包覆物体,只需一小块接触面即可实现附着。同时,它的能耗
2024-05-27 10:41:00
四维空间与三维空间的区别
...间中弯曲或者时间如何影响物体的运动。这种局限性促使科学家们探索超越三维空间的理论,以提供一个更全面的宇宙理解框架。四维空间:理论与定义四维空间,作为一个比三维空间更高级的概念
2024-01-04 10:14:00
经常发生“记忆断片”是痴呆前兆吗?
...,一拍脑袋才发现自己忘记了原本要干嘛......这个效应被科学家命名为门口效应(Doorway Effect),门究竟有着什么样的魔力?又是为什么?滴!!!记忆消除!别担心!
2023-04-20 19:52:00
科学家揭示大脑神秘新机制:尝试解释海马体如何映射外部世界
...用这一信息进行导航?凭借在这一领域的显著成就,英国科学家约翰·奥基夫(John O\'Keefe)教授、与挪威科学家爱德华·莫泽(Edvard Moser)和迈-布里特·莫泽(May-Britt Moser)夫妇(现已离婚)
2024-05-15 13:45:00
物理学家设计了一种方法来探测像我们这样的大型物体的量子行为
...研究提出了一种测量更大质量的量子的方法。长期以来,科学家们一直想要测试更大物体的量子性质:普遍的共识是,量子物理学适用于任何尺度,但随着物体的质量和复杂性的增加,它们的量子性
2024-01-19 10:33:00
更多关于科技的资讯: